针对当前彩色图像加密算法都是对RGB分量中所有像素加密,无法避免对次要像素的加密,使其加密效率较低,且加密后仍为彩色密文,增大了传输负载等不足。对此,本文提出了锯齿空间填充曲线耦合压缩感知的单通道彩图RGB分量灰度化实时同步加密算法。
一、锯齿空间填充曲线
空间填充曲线是连续扫描技术,对整个图像所有像素进行遍历一次,能够有效置乱图像像素位置,主要有:raster、Zigzag以及Hilbertr,其结构见图1。raster空间填充曲线(见图l(a))虽然简单,但是该技术的置乱效果较差;而Zigzag以及Hilbert技术(见图l(b)、(c))虽然能得到较好的置乱图像,但是其结构复杂,且只能用于方形图像。
对此,有必要设计一种新的空间曲线,不仅其结构简单,还能用于矩形图像,故本文基于锯齿曲线(见图2)。
定义了锯齿空间填充曲线,见图3和图4。
锯齿曲线模型如下:
其中,a为曲线的高度,T代表曲线周期。
根据模型(1),定义锯齿空间填充曲线,其中,a、T则分别为图像分辨率的高度与宽度。根据图2可知,本文的锯齿空间填充曲线实质是由多个直角三角形构成。因此,锯齿空间填充曲线通过访问直角三角形上的每个点,并遍历这些点或者像素一次,完成图像置乱。不同的图像分辨率所对应的锯齿模式见图3,从图中可知,该锯齿空间填充曲线仍然可以用于矩形图像置乱。图3(a)、(b)、(c)、:(d)确保了a、T的值仅仅等于分辨率的高度与宽度。另外,还可对口强加附加条件:D的取值必须能被分辨率高度整除,根据该附加条件,来拓展原始锯齿空间填充曲线,见图4。图4(a)为初始的锯齿填充模式;而图4(b)、图4(c)代表a =2、a=4对应的拓展锯齿空间填充模式。
为了更直观的评估本文设计的锯齿空间填充曲线,利用该技术处理图5(a),结果见图5。从视觉上看,raster空间填充曲线的置乱效果不佳;而Zigzag、Hilbert以及本文的锯齿空间填充曲线的像素置乱率比较,显著打乱了图像像素位置;特别是本文设计的拓展锯齿填充曲线,在a= 32,16,8时,置乱效果较佳,能够有效破坏图像像素间的关系,可获取较佳的退化图像;而a取其他值,有部分信息泄露。故对于本文设计的锯齿空间填充曲线,取a= 32,16,8,可获得较理想的置乱图像。
为了具体量化本文锯齿空间填充曲线与其他技术的置乱效果,本文借助峰值信噪比PSNR、频谱失真SD、通用图像质量UIA以及结构相似度SSIM来评估。令raster、Zigzag与Hilbert空间填充曲线记为R、Z、H;令本文设计的锯齿空间填充曲线分别为SI(初始)、S2(a=128拓展)、S3(a=64拓展)、S4(a=32拓展)、S5(a=16拓展)、S6(a=8拓展)、S7(a=4拓展)、S8(a=2拓展)、从图像库中择取常用的3幅图像,分别记为Lady,Lena以及Barbara为测试对象,尺寸为256×256的灰度图像,测试结果见图6。从图中可知,当a= 32,16,8,本文锯齿空间填充曲线的SD最小,SSIM最大(图6(b)、(d)),其性能要优于raster、Zigzag以及Hilbert等技术,这表明图像的置乱效果更好。
二、彩图灰度化实时加密算法设计
本文加密算法见图7。
从图7(a)可知,该算法为选择性加密,只扩散SP,不考虑次要像素;而当前算法是加密图像所有像素,属于全局扩散,其扩散像素数量非常大。由图7(b)可知,该算法的步骤有;
(1)基于锯齿空间填充曲线,高效扰乱彩图;
(2)根据压缩感知,对置乱感兴趣像素进行同步压缩;
(3)基于SP择取机制,形成SP矩阵;
(4)构造加密函数,获取灰度密文。
加密算法设计
(1)若彩色图像j的尺寸为NxN,利用本文设计的锯齿填充曲线,扰乱图像I,得到置乱图像I';
(2)再提取出置乱图像,7的RGB三分量,分别记为IR,IG,IB;
(3)给定密钥KR,Kc,KB,根据压缩感知,得到3个测量矩阵(PM1×m,cpM2×n,cpM3×n(g为感兴趣像素测量)。其中:
其中,M1、M2、M3分别代表彩图R、G、B分量像素矩阵行数。
(4)根据步骤(3)中的3个矩阵,测量对应的RGB三分量MR,Mc,MB,结果记为:CR,Cc,CB。
(5)根据模型(IO),可将CR,CG,CB合并成灰度图像Igray。
(6)利用SP提取方案,分离灰度图像IGruy的感兴趣像素与次要像素。
(7)由大到小,重排SP,形成SP矩阵M。
(8)构造加密函数,扩散矩阵M,得到加密矩阵M':
其中,mod为求余操作。
(9)根据位置映射,将M’映射到灰度图像矩阵M对应的位置,形成灰度密文I’:
其中:L为位置映射函数;RI'为加密像素矩阵M'中的第i个元素;ri为感兴趣像素矩阵M中的第i个元素。
压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。
实操指南:如何监控聊天中的敏感信息?这款秘籍软件,轻松掌握微信聊天动态
电影《摩登时代》里,流水线工人就连在吃饭时都要用“自动喂食机”提高效率,这样才能挤出更多时间投入工作。虽然现在打工人不至于此,但有些老板仍然放心不下……像企业聊天记录往往蕴含着大量的敏感信息。为了确保信息安全,监控聊天中的敏感信息成为了一项必要且重要的工作。以下是一款秘籍软件,帮助你轻松掌握微信聊天动态,确保信息安全。...
怎么监控员工上班情况?2024企业管理的四种方法,老板们不容错过
怎么监控员工上班情况?2024企业管理的四种方法,老板们不容错过员工上班在干什么?摸鱼?打游戏?老板该怎么管理?如何才能监视怎么监控员工上班情况?监控员工上班情况可以通过多种方式实现,但重要的是要确保这些措施既合法又合规,同时尊重员工的隐私权。以下是一些建议的方法:一、制定明确的行为规范与奖惩制度1、制定行为规范: 企...
怎么监控员工上班情况?快速监控员工状态
怎么监控员工上班情况?快速监控员工状态在企业管理中,如何有效监控员工上班情况,确保工作效率与团队协作,是每位老板都需面对的课题。本文为您揭秘五招快速监控员工状态的实用技巧,不仅能帮助您实时掌握员工动态,还能提升整体管理效率。作为老板,掌握这些技巧,将让您在企业管理中游刃有余,轻松应对各种挑战。一、使用安企神软件实时监控...
安企神桌管软件:提升企业管理效率的全能助力
安企神桌管软件:提升企业管理效率的全能助力在当今竞争激烈的商业环境中,企业必须不断优化管理和运营流程,以提高效率和盈利能力。安企神桌管软件正是这样一款面向中小企业的管理工具,能够帮助企业在多方面提升综合管理水平。本文将详细探讨安企神桌管软件给企业带来的多重价值。一、全方位的管理功能安企神桌管软件是一款集成了多种管理功能...
安企神:揭开终端安全管理软件的神秘面纱
安企神:揭开终端安全管理软件的神秘面纱在数字化日益普及的今天,企业的网络安全问题愈发显得重要。数据泄露、网络攻击等事件层出不穷,如何保障企业内部信息的安全性成为众多企业关心的焦点。安企神终端安全管理软件应运而生,作为一款专业的安全管理工具,它的功能与优势备受关注。本文将全面揭秘安企神软件的核心功能、应用场景及其在终端安...